OAK

Diagnosis and prognosis of Alzheimer's disease using brain morphometry and white matter connectomes .

Metadata Downloads
저자
Yun Wang ; Chenxiao Xu ; Ji-Hwan Park ; Seonjoo Lee ; Yaakov Stern ; Shinjae Yoo ; Jong Hun Kim ; Hyoung Seop Kim ; Jiook Cha
키워드 (영문)
computer applications to medicine. medical informaticsr858-859.7neurology. diseases of the nervous systemrc346-429
발행연도
2019-05
발행기관
Directory of Open Access Journal
유형
Article
초록
Accurate, reliable prediction of risk for Alzheimer's disease (AD) is essential for early, disease-modifying therapeutics. Multimodal MRI, such as structural and diffusion MRI, is likely to contain complementary information of neurodegenerative processes in AD. Here we tested the utility of the multimodal MRI (T1-weighted structure and diffusion MRI), combined with high-throughput brain phenotyping—morphometry and structural connectomics—and machine learning, as a diagnostic tool for AD. We used, firstly, a clinical cohort at a dementia clinic (National Health Insurance Service-Ilsan Hospital [NHIS-IH]; N = 211; 110 AD, 64 mild cognitive impairment [MCI], and 37 cognitively normal with subjective memory complaints [SMC]) to test the diagnostic models; and, secondly, Alzheimer's Disease Neuroimaging Initiative (ADNI)-2 to test the generalizability. Our machine learning models trained on the morphometric and connectome estimates (number of features = 34,646) showed optimal classification accuracy (AD/SMC: 97% accuracy, MCI/SMC: 83% accuracy; AD/MCI: 97% accuracy) in NHIS-IH cohort, outperforming a benchmark model (FLAIR-based white matter hyperintensity volumes). In ADNI-2 data, the combined connectome and morphometry model showed similar or superior accuracies (AD/HC: 96%; MCI/HC: 70%; AD/MCI: 75% accuracy) compared with the CSF biomarker model (t-tau, p-tau, and Amyloid β, and ratios). In predicting MCI to AD progression in a smaller cohort of ADNI-2 (n = 60), the morphometry model showed similar performance with 69% accuracy compared with CSF biomarker model with 70% accuracy. Our comparisons of the classifiers trained on structural MRI, diffusion MRI, FLAIR, and CSF biomarkers showed the promising utility of the white matter structural connectomes in classifying AD and MCI in addition to the widely used structural MRI-based morphometry, when combined with machine learning. Keywords: Alzheimer's disease, Multimodal MRI, DWI, Machine learning
저널명
NeuroImage: Clinical
저널정보
(2019-05). NeuroImage: Clinical, Vol.23
ISSN
2213-1582
DOI
10.1016/j.nicl.2019.101859.
연구주제분류:
NHIMC 학술성과 > 1. 학술논문
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Loading...