OAK

Environmental Enrichment Attenuates Oxidative Stress and Alters Detoxifying Enzymes in an A53T α-Synuclein Transgenic Mouse Model of Parkinson’s Disease

Metadata Downloads
저자
Jung Hwa Seo ; Seong-Woong Kang ; Kyungri Kim ; Soohyun Wi ; Jang Woo Lee ; Sung-Rae Cho
키워드 (영문)
transgenesubventricular zonestriatumparkinson's diseaseoxidative stressolfactory bulbinternal medicinegenetically modified mouseenvironmental enrichmentendocrinologybiologyparkinson’s diseasedetoxifying enzymes
발행연도
2020-09
발행기관
medline
유형
Article
초록
Although environmental enrichment (EE) is known to reduce oxidative stress in Parkinson's disease (PD), the metabolic alternations for detoxifying endogenous and xenobiotic compounds according to various brain regions are not fully elucidated yet. This study aimed to further understand the role of EE on detoxifying enzymes, especially those participating in phase I of metabolism, by investigating the levels of enzymes in various brain regions such as the olfactory bulb, brain stem, frontal cortex, and striatum. Eight-month-old transgenic PD mice with the overexpression of human A53T α-synuclein and wild-type mice were randomly allocated to either standard cage condition or EE for 2 months. At 10 months of age, the expression of detoxifying enzymes was evaluated and compared with wild-type of the same age raised in standard cages. EE improved neurobehavioral outcomes such as olfactory and motor function in PD mice. EE-treated mice showed that oxidative stress was attenuated in the olfactory bulb, brain stem, and frontal cortex. EE also reduced apoptosis and induced cell proliferation in the subventricular zone of PD mice. The overexpression of detoxifying enzymes was observed in the olfactory bulb and brain stem of PD mice, which was ameliorated by EE. These findings were not apparent in the other experimental regions. These results suggest the stage of PD pathogenesis may differ according to brain region, and that EE has a protective effect on the PD pathogenesis by decreasing oxidative stress.
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine
저널명
Antioxidants
저널정보
(2020-09). Antioxidants, Vol.9(10), 928–928
ISSN
2076-3921
DOI
10.3390/antiox9100928
연구주제분류:
NHIMC 학술성과 > 1. 학술논문
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Loading...